

Original Research Article

Water Quality and Phytoplankton Appraisal of Agbarha River in Delta State of Nigeria, for Aquaculture Purposes

***Iloba, K.I. and Utuedor, H.A.**

Department of Animal and Environmental Biology
Faculty of Sciences, Delta State University
Abraka, Delta State, Nigeria

*Corresponding author: kisyiloba@gmail.com; iloba@delsu.edu.ng

Receive 2nd December, 2018; Accepted 22nd December 2018; Corrected 30th December, 2018

Abstract

The use of any water body for aquaculture production is nexus to understanding its water quality and phytoplankton biomass, primary production surrogate. This study was undertaken to assess the Phytoplankton status and water quality of Agbarha River in Delta State of Nigeria; over a period of five weeks [March to May 2017] for its aquaculture potentials. The study revealed that fish farming is feasible in the River. Study found quality and quantity acceptable phytoplanktonic food (>3000 organisms/L) for fish farming. The plankton community was dominated by chlorophyta with ten species accounting for 49% of the overall assemblage, bacillariophyta had 9(nine) species constituting 41%, cyanophyta being five(5) species of 10% and dinophyta 2 species of 1% of the phytoplankton population. The mean results of the water quality parameters were air temperature, ranged from 29 – 39°C, water temperature(25°C – 34°C), pH (7.15 – 10.78), Total solids (0.23mg/l – 0.6mg/l), dissolved oxygen (2.2mg/l – 6.9mg/l), biochemical oxygen demand ranged from (0.1mg/l – 6.6mg/l), acidity ranged (14.0mg/l- 89.0mg/l), Alkalinity ranged from (10.0mg/l - 41.0mg/l), transparency ranged (0.02 – 1.2), phosphate (7.2mg/l – 10.8mg/l) and nitrate (0.005mg/l – 3.75mg/l). Most studied variables were aquaculture compliant and identified impairments were anthropogenically driven and controllable via withdrawal.

Keywords: Aquaculture, Phytoplankton assemblage, physicochemical parameters, Species diversity, Agbarha River

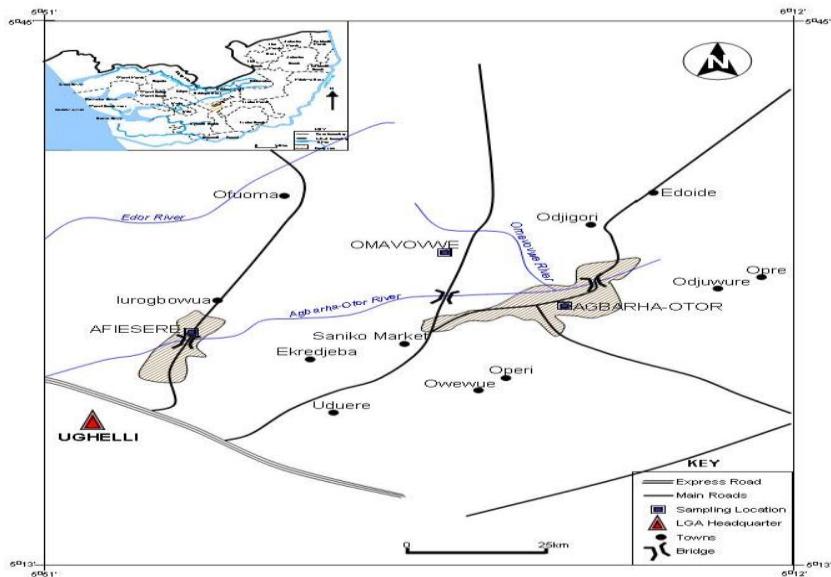
Introduction

The aquatic world is complex and diverse in nature with amazing organisms arranged in an intricate sequence based on their food requirements (Striebel *et al*, 2012; Alhassan, 2015). This sequence is anchored on the energy obtained from nutrient fixation organisms primarily the phytoplankton, also known as producers (Murulidhar and Yogananda Murthy, 2015).

Phytoplankton productively in any aquatic ecosystem is a function of their composition, biomass and the prevailing water quality (Striebel *et al.*, 2012). For their trophic position, they can provide

Copyright © 2018 by The Faculty of Agriculture, Delta State University, Abraka, Nigeria
This work is under Open Access within the terms of the [Creative Commons Attribution 4.0 International License](https://creativecommons.org/licenses/by/4.0/)

a good index for assessing aquatic productivity and its fish yield (Rynearson and Menden-Deuer, 2016). Thus they form an important component of aquatic ecosystems and provide information on its life-supporting capacity (Sharmin *et al.*, 2018). This basic information obtained from assessment of the composition, abundance or biomass of phytoplankton and water quality can be useful in traditional aquaculture practices in our water bodies, for youth's employment, and economic and societal development in a nation endowed with enormous natural water resources and undergoing recession (Pant *et al.*, 2014). This lucrative fast-growing agricultural sector is one of the primary gross revenue sources used by many developed countries to outwit food deficiency and recession (FAO, 2016; Joffre *et al.*, 2017). The businesses of fish farming flourished yet in the developed countries such as the US with 16 % water withdrawals in aquaculture (Pradhan *et al.*, 2008; Dieter *et al.*, 2018).


Unfortunately, Nigeria's enormous water resources distributed across the country have been under threat by our means of livelihood (anthropogenic activities) and industrialization, and yet without sign of economic improvement, even in the site area (Adesuyi, 2015; Idu, 2015). These activities have impacted directly or indirectly on the phytoplankton communities (due to their sensitivity) and their habitats, and adversely altered important environmental variables such as loss of river beds with associated increase in organic load among others, consequently impacting on the succeeding trophic levels (both the herbivorous and the omnivorous fish feeders and others) and making the water ecologically unfavourable for fish culture (Schabhatti *et al.*, 2013; Wang, *et al.*, 2016).

The nationwide deterioration, eutrophication and pollution of water bodies in Nigeria have been noted and documented by several researchers (Erhunmwunse *et al.*, 2013; Bukola *et al.*, 2015; Idu, 2015; Oribhabor, 2016), and Agbarha River system is no exception. However, very little or no report exist on the Agbarha River system in Ughelli North, Delta State, Nigeria, except the records of Iloba *et al.* (2018) which examined the effects of various human activities on the system's macro invertebrates. This study is a supplementary plan into all biological components of the river system to verify the first hypothesis of anthropogenic impacts, probably on the abundance and composition (biomass) of the phytoplankton communities of this important water body with fisheries potentials. In this context the research was designed to assess its water quality and phytoplankton composition and abundance as well as evaluate their interactions.

Materials and Methods

Study area

Study was conducted in Agbarha River, located at Agbarha-Otor, Ughelli North Local Government Area of Delta State, Nigeria. Being one of the important rivers in the said town, River Agbarha is a freshwater river, and lies within longitude 5° 12'N of the equator and latitude 5° 45'E of the Greenwich meridian (Iloba *et al.*, 2018) (Fig. 1).

Fig. 1: Location of study

Sample collection and analysis

On monthly basis, water and phytoplankton samples were collected from March to May, 2017 at three stations of the Agbarha River (from about the hours of 9am to 2pm, Nigerian time) at Agbarha-Otor (station 1), Omavovwe (station 2) and Afiesere (station 3) (Fig 1). Stations 1 and 3 are renowned to have witnessed higher anthropogenic activities like farming, dredging, bathing and fishing relative to station 2. Temperature was estimated in-situ using a mercury-in-glass thermometer (0.0-110°C). The rest of the parameters were analyzed in the laboratory. Conductivity and pH were determined using a Hanna conductivity meter and a pH meter (model H196107) respectively. Alkalinity was determined using the titrimetric method (APHA, 1998). Dissolved oxygen was determined using the Winkler's method, and biochemical oxygen demand (BOD) was determined after 5 days using the same method. Phosphate and nitrate were carried out spectrophotometrically following the procedure described in APHA (1998). Their values were expressed in mg/l.

Phytoplankton were collected by horizontal hauls of 25µm mesh size plankton net and preserved with 4% formalin. They were then viewed under an electron microscope, and identified using an identification key. Next, assemblages of Phytoplankton were studied by calculating the species diversity index (H) and species richness.

Results

The observed mean values of the water variables at the three sampled stations are presented in Table 1. Of the twelve variables investigated, eight of them; air, water temperatures, conductivity, acidity, Biochemical oxygen demand (BOD), dissolved oxygen, phosphate and nitrate were maximal in station 3 while the minimal values were mostly in Station 1. Total dissolved solids (TDS) and pH were highest in Station 2 whereas turbidity and conductivity were highest in Station 1

The study noted significant changes and interactions in physical and chemical water quality variables. The study further showed similar trends in the weekly distribution of water and air temperature, Dissolved oxygen and BOD, total solids and conductivity , pH and Phosphate while transparency values were near equal during the entire study period (Figures 2, 3 and 4) These variables were found to be significantly associated ($P < 0.05$) (Tables 3, 4 and 5). Most importantly the parameters were comparable with the allowable levels for aquaculture (Table 1). This study noted ideal water quality for aquaculture.

Table 1: Comparisons of water quality variables means \pm standard deviation (SD) in parenthesis among the three stations and suggested water-quality requirements for aquaculture

Water quality variables	Station 1	Station 1	Station 1	Acceptable range	Desirable range
Air Temperature (°C)	31.8(2.49)	33(2.55)	35(2.74)		
Water Temperature (°C)	28.4(1.82)	29.2(2.59)	31.2(2.17)	15-35	20-30
Total Solids (mg/L)	0.03(0.04)	0.43(3.88)	0.34(0.21)		
Transparency/Turbidity (cm)	0.26(0.44)	0.03(0.01)	0.12(0.21)	< 30	
pH	8.24(1.15)	8.5(1.47)	8.34(1.62)	7-9.5	6-5-9
Conductivity	26.2(2.50)	39.2(3.88)	42.9(11.8)	30-5000	100-2000
Alkalinity	29.6(7.64)	27.8(19.8)	27.2(6.34)	50-200	25-100
Acidity	37.4(24.5)	28.8(0.01)	45.8(26.6)		
Dissolved Oxygen (mg/L)	2.72(2.71)	2.52(1.32)	4.4(1.62)	3-5	
BOD (mg/L)	2.72(2.21)	2.52	4.38(2.50)	3-6	1-2
Phosphate (mg/L)	9.58(0.66)	9.1(1.10)	9.6(0.51)	0.03-2	0.01-3
Nitrate (mg/L)	0.68(0.16)	0.7(0.21)	2.16(1.66)	0-100	0.1-4.5
Plankton (No.L ⁻¹)	4.4×10^{-1}	6.5×10^{-1}	4.6×10^{-1}	2000-6000	3000-4500

Standards adopted from Bhatnagar and Devi (2013).

Table 2: Phytoplankton counts (unit/ml) and diversity indices at the three stations

S/N	Phytoplankton sp	Stations					Diversity indices		
		1	2	3	Total	Average	%	I-D	H
1	Bacillariophyta								
1	<i>Navicula sp</i>	28	12	28	68	22.7	10.66	0.6625	1.092
2	<i>Cyclotella striata</i>	19	28	0	47	23.5	7.37		
3	<i>Fragilaria javanica</i>	39	7	32	78	26	12.23		
4	<i>Pinnularia nobilis</i>	49	28	47	124	41.3	19.44		
5	<i>Thallssiosira subtilis</i>	11	15	37	63	21	9.87		
6	<i>Bacillaria Paradoxa</i>	4	6	10	20	6.7	3.13		
7	<i>Aulacoseira sp</i>	47	57	37	141	47	22.10		
8	<i>Lauderia annulata</i>	13	22	42	77	25.7	12.07		
9	<i>Thalassionema nitzchioides</i>	2	9	9	20	6.7	3.13		
	<i>Total</i>	212	184	242	638		100%		
	Dinophyta/							0.6627	1.093
1	<i>Peridinium africanum</i>	4	3	4	11	3.7	84.62		
2	<i>Ceratium sp</i>	0	2	0	2	0.7	15.38		
	<i>Total</i>	4	5	4	13		100%		
	Cyanophyta							0.6331	1.048
1	<i>Aphanizomenon sp</i>	23	10	12	45	15	32.14		
2	<i>Microcystis aeruginosa</i>	5	17	6	28	9.3	20		
3	<i>Oscillatoria limnosa</i>	32	5	4	41	13.7	29.29		
4	<i>Planktothrix rubescens</i>	6	12	8	26	8.7	18.57		
	<i>Total</i>	66	44	30	140		100%		
	Chlorophyta							0.5882	0.988
1	<i>Volvox rousseletti</i>	3	17	17	37	12.3	4.89		
2	<i>Pandorina sp</i>	3	234	57	294	98	38.84		
3	<i>Spirogyra porticalis</i>	44	32	8	84	28	11.09		
4	<i>Chlorella vulgaris</i>	9	2	1	12	4	1.59		
5	<i>Closterium enrenbergii</i>	26	55	43	124	41.3	16.38		
6	<i>Mougeotia sp</i>	19	19	9	47	15.7	6.21		
7	<i>Oedogonium suecicum</i>	14	15	16	45	15	5.94		
8	<i>Pleurotaenium ovatum</i>	3	10	3	16	5.3	2.11		
9	<i>Gonatozygon kinahanii</i>	8	21	26	55	18.3	7.27		
10	<i>Tribonema bombycina</i>	18	19	6	43	14.3	5.68		
	<i>Total</i>				757		100%		

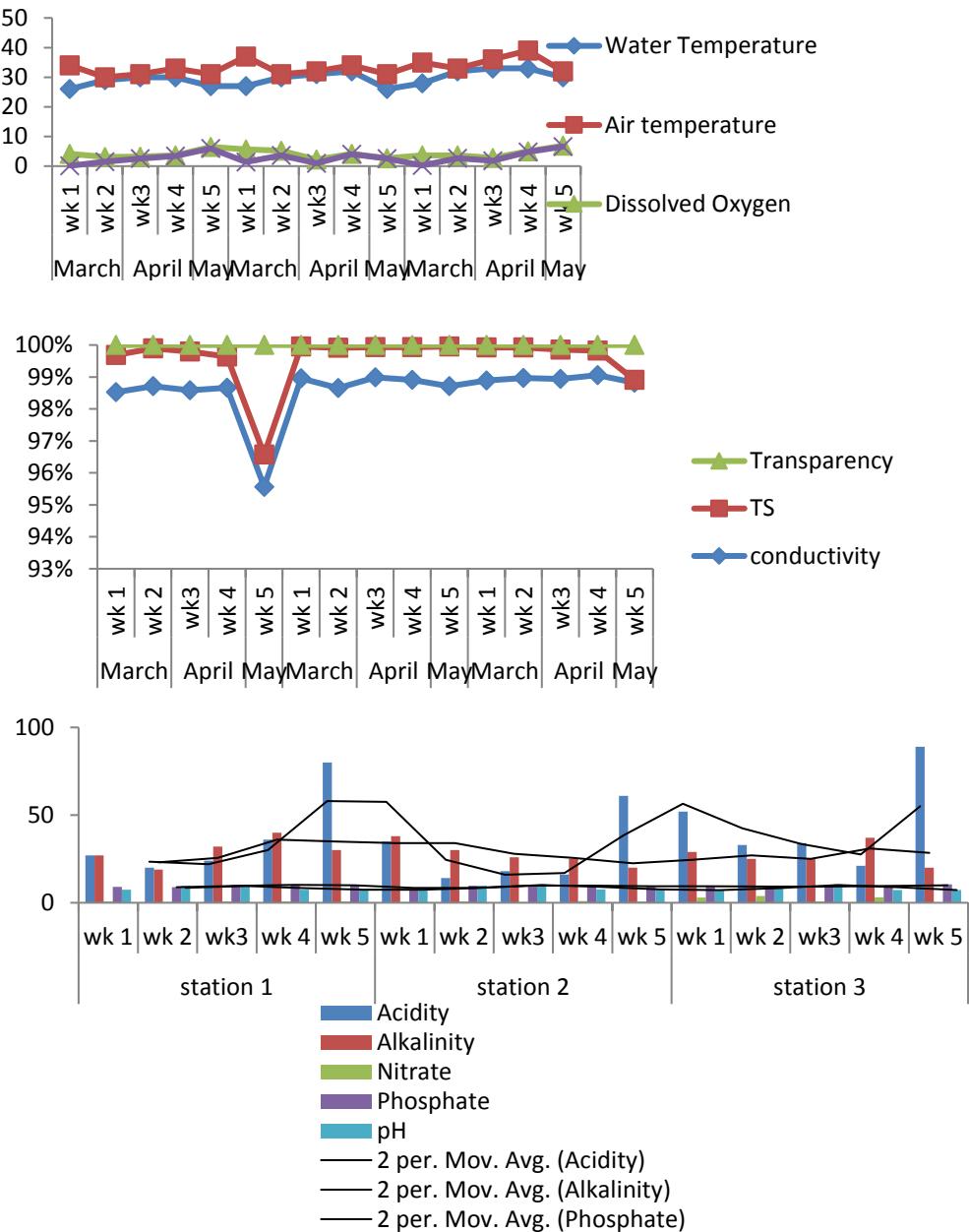


Fig.2: weekly changes in air and water temperature, dissolved oxygen and biochemical oxygen, transparency, total solids, conductivity, acidity and alkalinity, pH, nitrate and phosphate; the trend line pattern of fluctuations defines the distribution of these parameters during the study period at Agbarha River from March to May 2017.

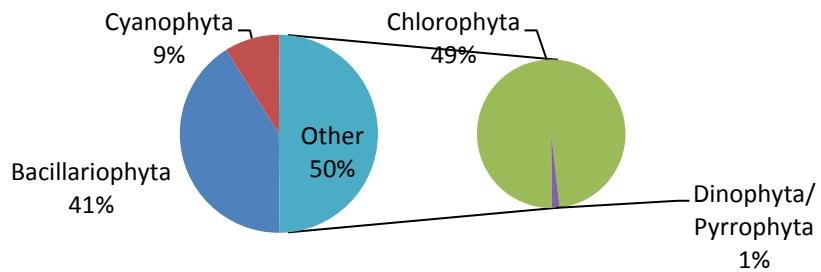


Fig. 3: Quality Composition of Phytoplankton Assemblage of Agbarha River

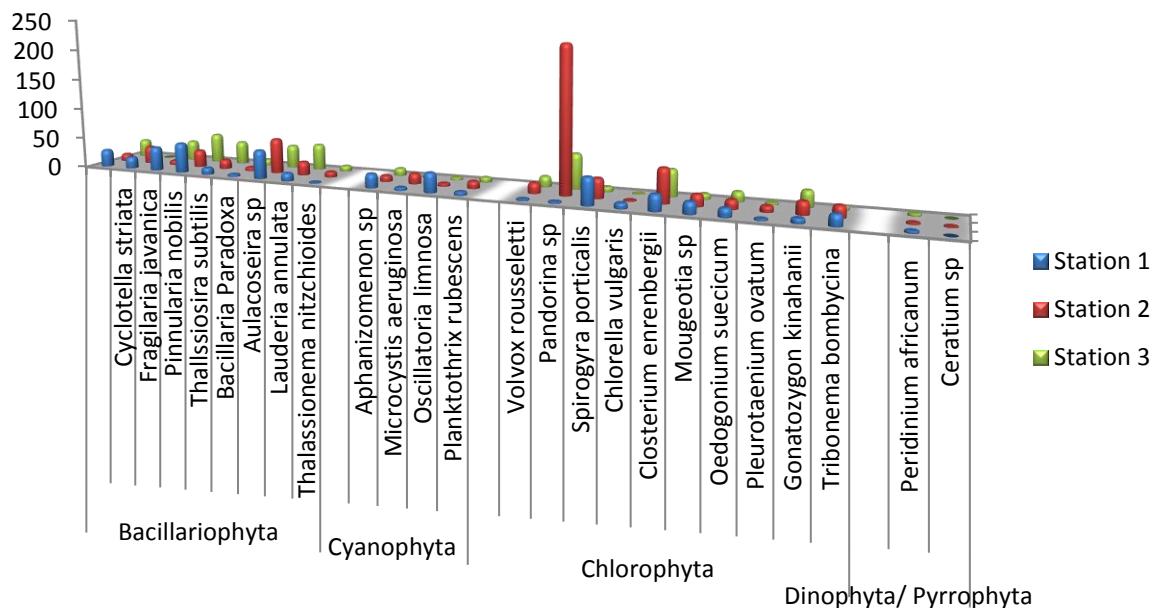


Fig. 4: Species composition, abundance and distribution of four phytoplankton taxa of Agbarha River from March to May 2017

Phytoplankton

The study identified 25 phytoplankton species of four taxa (Table 2), dominated by Chlorophyta, with ten species accounting for 49% of the overall assemblage. Bacillariophyta had 9 (nine) species, constituting 41%, cyanophyta had five (5) species (10%) and dinophyta, two (2) species, equivalent to 1% of the phytoplankton population (Fig. 3). Station 2 had the highest counts of $6.5 \times 10^{-1}/L$, followed by station 3 ($4.6 \times 10^{-1}/L$), and closely by station 1 ($4.4 \times 10^{-1}/L$) (Table 1) while the abundance and distribution of four phytoplankton taxa at Agbarha River from March to May 2017 are presented in Fig 1.

The four phytoplankton taxonomic group species were positively associated with the water quality variables except the cyanophyta and phosphate (Tables 3, 4 and 5). Phytoplankton diversity indices were low. Shannon index (H) varied from 0.9878 to 1.093 while the Simpson's (1-D) varied between 0.5882 and 0.6627 (Table 2).

Table 3: Correlation results between means of environmental variables and Cyanophytes of Agbarha River system (p<0.05)

	conductivity	TS	Trans	Acid	Alkalinity	Nitrate	Phosphate	pH	Water T	Air T	DO	BOD
Aphanizomenon sp	0.62	0.17	0.36	0.47*	0.60	0.77*	0.28	0.22	0.76*	0.66*	0.37	0.14
Microcystis aeruginosa	0.80*	0.52	0.16	0.34	0.68*	0.84*	0.37	0.48*	0.86*	0.57	0.16	0.01
Oscillatoria limmosa	0.88*	0.62	0.69*	0.99*	0.56	0.46*	0.03	0.37	0.47*	0.39	0.63	0.30
Planktothrix rubescens	0.99*	0.99*	0.72*	0.94*	0.13	0.37	0.41	0.11	0.99*	0.07	0.55	0.69*
conductivity	0	0.07	0.51	0.39	0.99	0.10	0.73*	0.74*	0.73*	0.81*	0.95*	0.99*
Total solids	0.84*	0	0.17	0.18	0.94	0.12	0.37	0.46	0.78*	0.97*	0.59	0.38
Transparency	-0.40	-0.71	0	0.01	0.31	0.20	0.62	0.49	0.27	0.38	0.16	0.15
Acidity	-0.50	-0.71	0.96*	0	0.38	0.20	0.92*	0.37	0.13	0.53	0.14	0.36
Alkalinity	-0.01	0.05	-0.57	-0.51	0	0.33	0.93*	0.51	0.27	0.01	0.76*	0.63*
Nitrate	0.80*	0.77*	-0.68	-0.68	0.56*	0	0.52	0.88*	0.50	0.43	0.93*	0.63*
Phosphate	-0.22	-0.52	0.31	0.06	-0.06	-0.39	0	0.76*	0.36	0.74*	0.82*	0.18
pH	0.21	0.44	-0.41	-0.52	-0.40	-0.09	0.19	0	0.61	0.41	0.11	0.64*
Water Temperature	0.21	0.17	-0.61	-0.77	0.61	0.40	0.53	0.31	0	0.47	0.27	0.99*
Air Temperature	-0.15	-0.03	-0.51	-0.38	0.97*	0.46	-0.21	-0.49	0.43	0	0.84*	0.51
Dissolved Oxygen	0.04	-0.33	0.73*	0.76	-0.19	-0.06	-0.14	-0.79	-0.62	-0.13	0	0.31
Biochemical oxygen demand	0.01	-0.51	0.74*	0.53	-0.29	-0.29	0.70*	-0.29	-0.01	-0.40	0.58	0

Table 4: Correlation results between means of environmental variables and Bacillariophytes of Agbarha River system. p<0.05.

	Cond.	TS	Trans	Acidity	Alkalinity	Nitrate	Phosphate	pH	Water T	Air T	DO	BOD
Navicula	0.97*	0.56	0.51	0.86*	0.54	0.50	0.02	0.56	0.56	0.35	0.90*	0.14
Cyclotella	0.54	0.61	0.58	0.46	0.41	0.82*	0.22	0.64*	0.09	0.52	0.23	1.00*
Fragilaria	0.16	0.62	0.60	0.80*	0.57	0.56*	0.91*	0.82*	0.80*	0.43	0.30	0.28
Pinnularia	0.34	0.07	0.40	0.55*	0.81*	0.39	0.07	0.65*	0.61*	0.88*	0.81*	0.20
Thallssiosiras	0.29	0.76*	0.45	0.54	0.58	0.63*	0.85*	0.53	0.51*	0.53	0.11	0.32
Bacillaria	0.36	0.48283	0.95*	0.68*	0.27	0.99*	0.56	0.12	0.78*	0.13	0.62	0.68*
Aulacoseir	0.28	0.16147	0.83*	0.92*	0.40	0.58*	0.18	0.69*	0.36	0.45	0.83*	0.58*
Lauderia	0.86*	0.67*	0.65*	0.50	0.17	0.76*	0.23	0.86*	0.05*	0.31	0.63*	0.70*
Thalassiones	0.40	0.14	0.37	0.32	0.51	0.743*	0.74*	0.04	0.85*	0.44	0.25	0.43
conductivity	0	0.07	0.51*	0.39	0.99*	0.10	0.73*	0.74*	0.73*	0.81*	0.96*	0.99*
TS	0.84	0	0.18	0.18	0.94*	0.12	0.37	0.46	0.78*	0.97*	0.59*	0.38
Transparency	-0.40	-0.71*	0	0.01	0.31	0.20	0.61	0.49	0.27	0.38	0.16	0.15
Acidity	-0.51	-0.71*	0.96*	0	0.38	0.20	0.92*	0.37	0.13	0.53	0.14	0.36
Alkalinity	-0.01	0.05	-0.57*	-0.51	0	0.33	0.93*	0.51	0.27	0.01	0.76*	0.63*
Nitrate	0.80	0.77*	-0.68*	-0.68*	0.56*	0	0.52*	0.88*	0.50*	0.43	0.93*	0.63*
Phosphate	-0.22	-0.52	0.31	0.06	-0.06	-0.39	0	0.76*	0.36	0.74*	0.82*	0.19
pH	0.21	0.44	-0.41	-0.52	-0.40	-0.09	0.19	0	0.61	0.41	0.11	0.64*
Water Temperature	0.21	0.17	-0.61	-0.77*	0.61	0.40	0.53	0.31	0	0.47	0.27	0.99*
Air Temperature	-0.15	-0.03	-0.51	-0.38	0.97*	0.46	-0.210	-0.49	0.43	0	0.84*	0.51
Dissolved Oxygen	0.04	-0.33	0.73*	0.76*	-0.19	-0.06	-0.14	-0.79*	-0.62	-0.13	0	0.31
Biochemical Oxygen Demand	0.01	-0.51	0.74*	0.53	-0.29	-0.29	0.70*	-0.29	-0.01	-0.40	0.58*	0

Table 5: Correlation results between means of environmental variables and Chlorophytes of Agbarha River system (p<0.0)

Chlorophytes	Conductivity	Ts	Trans	Acidity	Alkalinity	Nitrate	Phosphate	pH	Water T	Air T	DO	BOD
Volvox	0.36	0.06	0.07	0.08	0.95*	0.40	0.57*	0.14	0.57*	0.97*	0.15	0.20
Pandorina	0.76*	0.83*	0.47	0.79*	0.26	0.57*	0.16	0.45	0.84*	0.12	0.98*	0.17
Spirogyra	0.34	0.31	0.26	0.35	0.15	0.02	0.37	0.54*	0.63*	0.18	0.93*	0.52*
Chlor	0.02	0.23	0.83*	0.70*	0.97*	0.15	0.77*	0.89*	0.93*	0.81*	0.55*	0.70**
Closter	0.33	0.48	0.27	0.18	0.12	0.08	0.86*	0.83*	0.12	0.27	0.79*	0.97*
Mougeo	0.98*	0.38	0.29	0.45	0.85*	0.96*	0.34	0.26	0.89*	0.96*	0.20	0.04
Oedogo	0.49	0.51	0.63	0.57*	0.14	0.99	0.37	0.86*	0.13	0.20	0.50	0.99*
Pleuro	0.75*	0.76*	0.23	0.22	0.01	0.22	0.89*	0.73*	0.11	0.06	0.64*	0.75*
Gonato	0.60*	0.96*	0.80*	0.63*	0.20	0.34	0.50*	0.47	0.23	0.35	0.78*	0.48*
Tribon	0.99*	0.66*	0.49	0.80*	0.33	0.41	0.08	0.41	0.73*	0.19	0.86*	0.20
conductivity	0	0.072	0.50*	0.39	0.99*	0.10	0.73*	0.74*	0.73*	0.81*	0.96*	0.99*
Total solids	0.84*	0	0.17	0.18	0.93*	0.12	0.37	0.46	0.78*	0.97*	0.59*	0.38
Transparency	-0.40	-0.71*	0	0.01	0.31	0.20	0.62*	0.49	0.27	0.38	0.16	0.15
Acidity	-0.50*	-0.71*	0.96*	0	0.38	0.20	0.92*	0.37	0.13	0.53	0.14	0.36
Alkalinity	-0.01	0.05	-0.57*	-0.51	0	0.33	0.93*	0.51*	0.27	0.01	0.76*	0.63*
Nitrate	0.80*	0.77*	-0.68*	-0.68*	0.56*	0	0.52*	0.88*	0.50*	0.43	0.93*	0.63*
Phosphate	-0.22	-0.52*	0.31	0.06	-0.06	-0.39	0	0.76*	0.36	0.74*	0.82*	0.19
pH	0.21	0.44	-0.41	-0.52	-0.40	-0.09	0.19	0	0.61*	0.41	0.11	0.64*
Water Temperature	0.21	0.17	-0.61	-0.77*	0.61*	0.40	0.53*	0.31	0	0.47	0.27	0.99*
Air Temperature	-0.15	-0.03	-0.51*	-0.38	0.97*	0.46	-0.21	-0.49	0.43	0	0.84*	0.51*

Dissolved	0.036	-0.33	0.73*	0.76*	-0.19	-0.056	-0.14	-0.79*	-0.62*	-0.13	0	0.31
Oxygen												
BOD	0.01	-0.51*	0.74*	0.53	-0.29	-0.29	0.70*	-0.29	-0.01	-0.40	0.60*	0

Discussion

Nature's provision is one of the natural means of survival for mankind when fully harnessed. Fish farming is one the ways to put our natural water resources into use to provide finance, and food for man particularly in this present dispensation (Boyd and McNevin, 2015). The present study has identified Agbarha River as a potential site for aquaculture development notwithstanding the current human activities which are controllable through proper management (Dickson *et al* 2016; Oribhabor, 2016; Fore *et al.*, 2018).

The study identified 28 acceptable species of algae which were excellent fish food in aquaculture (Halima, 2017), partitioned into four taxonomic groups. Phytoplankton biomass/ml was quantitatively and qualitatively sufficient to grow or culture herbivorous fish like *Tilapia*, silver and grass carp, and was of good quality (Bhatnagar and Devi, 2013; Napiorkowska-Krzelbietke, 2017). The phytoplankton number/ L observed in the present study was more than the super margin of the desirable plankton limit, and is suggestive of high grazing and yield of zooplankton and fish (Halima, 2017). Similar phytoplankton species; *Bacillariophytes* such as *Navicula*, *Cyclotella*, *Pinnularia*, *Fragillaria*, *Thalassiosira*, *Aulacoseira*, *Dinophyta*, *Peridium*, *Ceratium*, *Chlorophyta*, *Volvox*, *Pandorina*, *Spirogyra*, *Chlorella*, *Closterium*, *Mougeotia*, *Oedogonium*, *Gonatozygon*, *Cyanophyta*, *Aphanizomenon*, *Microcystis* and *Oscillatoria*, have been identified in the diet of herbivorous fishes (Pradhan *et al.*, 2008; Sipauba-Tavares *et al*., 2010; Dalal *et al* ., 2012; Atindana *et al* ., 2016; Halima, 2017).

The study revealed that the phytoplankton abundance/biomass were positively associated with the physical and chemical variables, thus depicting a favourable environment for their enhanced growth, and qualifying the system for aquaculture. The low transparency, turbidity and total solids in the present study are major and important factors to ensure continuous manufacture of food through photosynthesis (Murulidhar and Yogananda, 2015). This could probably be the factor underlying the strong association between turbidity and total dissolved solids. The low turbidity and total solids in this study is suggestive of reduced or no impact of anthropogenic activities such as dredging on the phytoplankton population in the system due to self-purification.

The buffering capacity of the river is high, as is evident from the low alkalinity range (19-40 mgCaCO₃/l) across the stations when compared with the lower preferred range (50 -100mg CaCO₃/ml) for fish cultures (Pradhan *et al.*, 2008). The nutrient status was relatively high compared with water bodies around this region (Iloba, 2012). The study noted the sufficiency of the basic nutrients: nitrate and phosphate. The phosphate values were in excess of the acceptable limits. The phosphate level in the present study could be responsible for the high number of species /ml of sample (Kuang, *et al* 2004). Phosphate is not a limiting factor for phytoplankton growth in this system.

The pH reported in the present study is within the recommended pH for freshwater fish culture. The upper limit dissolved oxygen range is within the acceptable range and in agreement with the dissolved oxygen range in successful fish farms (Pradhan *et al.* 2008; Bhatnagar and Devi, 2013). The levels of most water variables in this study (Table 1) were within fish tolerable limits. The outliers observed outside the permissible limits are not far from the already-mentioned effects of anthropogenic imparts which could be curtailed by withdrawals from the site. The air temperature of the study area is typical of its location around the equator. Strong interdependence exists between the air and water temperatures, a natural phenomenon in tropical waters, and directly or indirectly governs diverse activities in the system (Iloba *et al.*, 2018). This is further confirmed by the strong correlation between these variables.

The study also demonstrated sufficient phytoplankton diversity in Agbara River which is an indicator of enough food for fish culture. Vallina *et al.* (2014) noted that phytoplankton diversity greater than 1% is of great significance in accounting for ecosystem productivity. High phytoplankton count has been implicated severally by researchers as a major reason for high fish production (Pradhan *et al.*, 2008). The phytoplankton count at the different stations is more than the super marginal limit of the acceptable plankton (zooplankton and phytoplankton) range. This is suggestive of high primary productivity and possibly high zooplankton grazing, although not quantified in the present study. Hence the possibility of polyculture is not farfetched in this system. Primary production and the high nutrient variables show weekly variations and were highly correlated (Vallina *et al.*, 2014). The bio-remediatory role of microorganisms in our study is revealed by the association between alkalinity and BOD ($r = 0.63$), although the diversity indices pointed an impaired water body (Fulazzaky, 2009). However, the positive influence of physico-chemical parameters on phytoplankton abundance offers these system good aquaculture potentials.

Conclusion

The phytoplankton abundance revealed species which were abundant in quality and quantity and can support fisheries and other aquatic life. However the diversity indices revealed a moderately disturbed water body. The undesirable limits of some physico-chemical parameters noted in the present study are anthropogenically driven, and could be controlled by withdrawal. Proper monitoring of the water body should be done in order to sustain the biological structure of the river.

References

Adesuyi, A.A., Nnodu, V.C., Njoku, K.L. and Jolaoso, A. (2015). Nitrate and phosphate pollution in surface water of Nwaja Creek, Port Harcourt, Niger Delta, Nigeria. *International Journal of Geology, Agriculture and Environmental Sciences* 3(5): 14-20.

Alhassan, E.H. (2015). Seasonal variations in phytoplankton diversity in the Bui dam area of the Black Volta in Ghana during the pre- and post-impoundment periods. *Revista de Biología. Tropical (International Journal Tropical Biology and Conservation)* 63(1)13-22.

APHA (1998). *Standard Method for the Examination of Water*. American Public Health Association (APHA), Washington D.C., Section 2000-6000.

Atindana, S.A., Blay, J. and Yankson, K. (2016). Investigation on food ecology of three Cichlid Species in the Mankessim Reservoir, Central Region of Ghana. *International Journal of Fisheries and Aquaculture* 8(5):55-61.

Bhatnagar, A. and Devi, P. (2013). Water quality guidelines for the management of pond fish culture. *International Journal of Environmental Sciences* 3(6):1980-1993.

Boyd, C.E. and McNevin, A.A. (2015). *Aquaculture, Resource use, and the Environment*. John Wiley & Sons, Inc, Hoboken, NJ, USA. Doi: 10.1002/9781118857915 ISBN: 978-0-470-95919-0.

Bukola, D., Zaid, A., Olalekan, E.S. and Falilu, A. (2015). Consequences of anthropogenic activities on fish and the aquatic environment. *Poultry, Fisheries and Wildlife Sciences* 3: 138. Doi: 10.4172/2375-446X.1000138.

Dalal, L.P., Nisal, R.S. and Dhabarde, P.F. (2012). Bio-diversity of freshwater algae of Mahakali Water Reservoir of Wardha District of Maharashtra State, India. *Bionana Frontier* 5: 2-II.

Dickson, M., Nasr-Allah, A., Kenaway, D., and Kruijssen, F. (2016). Increasing fish farm profitability through aquaculture best management practice training in Egypt. *Aquaculture* 465: 172-178.

Dieter, C.A., Maupin, M.A., Caldwell, R.R., Harris, M.A., Ivahnenko, T.I., Lovelace, J. K., Barber, N. L. and Linsey, K.S. (2018). *Estimated use of Water in the United States in 2015*. US Geological Survey Circular 1441, 65p. <https://doi.org/10.3133/circ1441>.

Erhunmwunse, N.O., Dirisu, A.R. and Ogbeibu, A.E. (2013). Managing eutrophication in Nigeria inland waters. *Journal of Water Resource and Protection* 5: 743-746.

FAO (2016). *Handbook of Small-Scale Freshwater Fish Farming*. FAO Training Series No. 24. Food and Agriculture Organization of the United Nations, Rome, Italy.

Fore, M., Frank, K., Norton, T., Svendsen, E., Alfredsen, J.A., Dempster, T., Eguiraun, H., Watson, W., Stahl, A., Sunde, L.M., Schellewald, C., Skoien, K.R., Alver, M.O. and Berckmans, D. (2018). Precision fish farming: A new framework to improve production in aquaculture. *Biosystems Engineering* 173:176-193.

Fulazzaky, M.A. (2009). Water quality evaluation system to assess the Brantas River water. *Water Resources Management* 23: 3019-3033.

Halima, N.B. (2017). Why is it important to use algae in aquaculture? *Journal of Biochemistry Biotechnology* 1(1):11-13.

Idu, A.J. (2015). Threats to Water Resources Development in Nigeria. *Journal of Geosciences* 4:205. Doi: 10.4172/2381-8719.1000205.

Iloba, K.I. (2012). The physico-chemical characteristics and Plankton of Ethiope River, Nigeria. Ph.D Thesis, Delta State University Abraka, Delta State, 446pp.

Iloba, K.I., Akawo, O.N. and Nwaeifiene, F. (2018). Diversity and community structure of macroinvertebrates in anthropogenically stressed water body in Delta State, Nigeria. *International Journal of Applied Biological Research* 9(1): 93 – 206.

Joffre, O.M., Klerkx, L., Dickson, M. and Verdegem, M. (2017). How is innovation in aquaculture conceptualized and managed? A systematic literature review and reflection framework to inform analysis and action. *Aquaculture* 470:129-148.

Kuang, Y., Huisman, J., Elser, J. J. (2004) Stoichiometric Plany-herbivore Models and their Interpretation. *Mathematical Biosciences and Engineering* 1(2): 215-222.

Murulidhar, V.N and Yogananda Murthy, V.N. (2015). Ecology, distribution and diversity of Phytoplankton in Teetha Wetland, Tumakuru District, Karnataka, India. *International Journal of Environment and Pollution Research* 3(2): 1-12.

Napiorkowskwa-Krzelbietke, A. (2017). Phytoplankton as a basic nutritional source in diets of fish. *Journal of Elementology* 22(3): 831-841. DOI: 10.5601/jelem.2016.21.4.1375.

Oribhabor, B.J. (2016). Impact of human activities on bio-diversity in Nigerian aquatic ecosystems. *Science International* 4(1):12-20.

Pant, J., Barman, B.K., Murshed-E-Jahan, K., Belton, B. and Beveridge, M. (2014). Can aquaculture benefit the extreme poor? A case study of landless and socially marginalized Adivasi (ethnic) communities in Bangladesh. *Aquaculture* 418-419:1-10.

Pradhan, A., Bhaumik, P., Das, S. and Mishra, M. (2008). Phytoplankton diversity as indicator of water quality for fish cultivation. *American Journal Environmental Sciences* 4(4) 406- 411.

Rynearson, T.A. and Menden-Deuer, S. (2016). Drivers that structure biodiversity in the plankton. In: Glibert, P.M. and Kana, T.M. (eds.), *Aquatic Microbial Ecology and Biogeochemistry: A dual perspective*. Springer International Publishing, Switzerland 2016 13. DOI 10.1007/978-3-319-30259-1_2.

Schabhatti, S., Hingsamer, P., Weigelhofer, Hein T., Weigert, A. and Striebel, M. (2013). Temperature and species richness effects in phytoplankton communities. *Oecologia* 171(2)527-36.

Sharmin A., Rahman, M., Faruk, A., Bhuiyan, N.M., Hossain, A. and Abdulla-Al-Asif (2018). Qualitative and quantitative analysis of phytoplankton in culture pond of Noakhali district Bangladesh. *International Journal of Fisheries and Aquaculture Studies* 6(4E):371-375.

Sipauba-Tavares, L.H., Millan, R.N. and Santeiro, R.M. (2010). Characterization of a plankton community in a fish farm. *Acta Limnologica Brasiliensis* 2(1): 60-69.

Striebel, M., Singer, G., Stibor, H. and Andersen, T. (2012). Trophic overyielding: Phytoplankton diversity promotes zooplankton productivity. *Ecology* 93(12):27.

Vallina, S.M., Follows, M.J., Dutkiewicz, S., Montoya, J.M., Cermeno, P. and Loreau, M. (2014). Global relationship between phytoplankton diversity and productivity in the ocean. *Naturecommunications* 5:4299. DOI:10.1038/ncomms5299/www.nature.com/naturecommunications.

Wang, Y.K., Chen, P.Y., Dahms, H.U. Yeh, S.L. and Chiu, Y.J. (2016). Comparing methods of measuring phytoplankton biomass in aquaculture ponds. *Aquaculture Environment Interactions*. 8: 665-673.